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NOTES PART II: BASICS

Singularities of differential equations. A point a ∈ P1
C = C ∪ {∞} is called a singularity of a monic

complex linear differential equation with meromorphic coefficients Ly = y(n) + p1y
(n−1) + · · ·+ pny = 0

if at least one of the coefficients pi(x) has a pole at a. If all pi are holomorphic at a, then a is a non-singular

point of L. A singularity is called regular if it has a basis of local solutions which have moderate growth as

one approaches the singular point. This is for the moment just an intuitive definition which still has to be

made precise (also, the concept of basis of solutions is not specified rigorously yet). We will show later that

regularity is equivalent to saying that for every i = 1, ..., n, the order of the pole of pi(x) at a is at most i.

A singular point which is not regular is called an irregular singularity.

A point a ∈ C ∪ {∞} is called apparent singularity of L if Ly = 0 possesses locally at a a basis of

holomorphic solutions. In example 4 from above, 0 is an apparent singularity, since the local solutions at 0

are polynomials.

Let L =
∑n
j=0 pj∂

j =
∑n
j=0

∑∞
i=0 cijx

i∂j be a differential operator with polynomial, holomorphic or

formal coefficients pj(x) =
∑∞
i=0 cijx

i. The initial form (or initial operator) of L at 0 is the operator

L0 = in(L) =
∑
i−j=τ cijx

i∂j ,

where τ = mincij 6=0{i− j} ∈ Z is the shift of L (or rather of L0) at 0. The polynomial

χL(r) =
∑
i−j=τ cijr

j ,

where rj = r(r − 1) · · · (r − j + 1) denotes the falling factorial, is called the indicial or characteristic

polynomial of L at 0. Cleary, χL = χL0 . Analogous definitions hold at other points a ∈ P1
C, taking into

account the respective Taylor expansions of the coefficients of L at a, replacing x by x − a if a ∈ C and

leaving ∂ invariant. For a = ∞, one has to replace in the coefficients of L the variable x by 1
x and adjust

accordingly the derivations ∂i, using the differentiation rules for ∂i[f( 1
x )]. In particular, ∂ has to be replaced

by − 1
x2 ∂. The resulting operator has then to be considered at 0 (see below).

If a is a non-singular point or a regular singularity of the differential operator L, then the complex roots of

the indicial polynomial χL of L at a are called the local exponents of L at a.

Fact. The point 0 is a non-singular point or a regular singularity of L if and only if the initial form

L0 of L has the same order as L.

Proof. The assertion is easily checked using the order condition on the poles from above. An extensive

characterization of regular singularities will be provided later on. 	
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Expansion at infinity. If L =
∑n
j=0

∑∞
i=0 cijx

i∂j is a differential operator on P1
C with meromorphic

coefficients pi we may expand L in a local chart at∞. To this end, replace x by 1
x in the coefficients pi(x)

and in the solutions y(x) of Ly = 0. Let us call ψ this automorphism of P1
C. Applying ψ results in a

change of the differential operator L to an operator ψ∗(L) – the pullback of L under ψ – where now also the

derivations ∂i will have to be adapted. In fact, for a function f , the i-th derivative ∂i[f( 1
x )] = ∂i[f(ψ(x))]

can be expressed as the composition of a differential operator Li = ψ∗(∂i) applied to f(x) with the

subsequent substitution of x by 1
x , say, ∂i[f( 1

x )] = (Lif)( 1
x ). In particular, we will have

L1 = − 1

x2
∂, since ∂[f( 1

x )] = − 1
x2 (∂f)( 1

x ),

L2 =
1

x4
∂2 + 2

1

x3
∂, since ∂2[f( 1

x )] = 1
x4 (∂2f)( 1

x ) + 2 1
x3 (∂f)( 1

x ),

L3 = − 1

x6
∂2 − 6

1

x5
∂2 − 6

1

x4
∂,

since ∂3[f( 1
x )] = − 1

x6 (∂2f)( 1
x )− 4 1

x5 (∂2f)( 1
x )− 2 1

x5 (∂2f)( 1
x )− 6 1

x4 (∂f)( 1
x ).

Example. (I11) Let us take the operator L = x3∂2 − (x− x2)∂ + 1. It has initial form L0 = −x∂ + 1 at

the origin 0 of C. As its order is smaller than the order of L, the point 0 is an irregular singularity of L. For

instance, y(x) =
∑∞
k=0 k!xk+1 is a divergent formal power series solution of Ly = 0. Let us compute the

expansion of L at∞. Substitution gives

ψ∗(L) =
1

x3
1

x4
∂2 + 2

1

x3
1

x3
∂ − (

1

x
− 1

x2
)(− 1

x2
)∂ + 1 =

1

x7
∂2 + [2

1

x6
∂ +

1

x3
− 1

x4
]∂ + 1.

Multiplication with the common denominator x7 results in the operator

L̃ = ∂2 + [2x+ x4 − x3]∂ + x7,

which is non-singular at 0. This shows that the local structure of a differential equation at∞ may not be

immediately obvious from the expansion of the operator at 0.

Systems of linear differential equations. Let (K, ∂) be a differential field, i.e., a field together with a

derivation ∂ : K → K (think of K the field of meromorphic functions and ∂ = d
dx the usual derivative).

The field of constants C ⊂ K consists of the elements f with ∂f = 0. A system of n linear first order

equations over K is of the form

y′1 = a11y1 + · · ·+ a1nyn

...
...

...

y′n = an1y1 + · · ·+ annyn

or, in matrix notation, ∂Y = AY , with the unknown column vector Y = (Y1, Y2, ..., Yn)T and an (n× n)

matrix A = (aij) ∈ Mn(K). Here ∂ acts on Kn componentswise, i.e., ∂(Y1, ..., Yn)T = (∂Y1, ..., ∂Yn)T .

The induced linear map is

L = ∂ −A : Kn → Kn,

Y → ∂Y −AY .

If K ⊂ K ′ is a field extension with ∂′ : K ′ → K ′ extending ∂ : K → K, any vector Y ∈ K ′n such that

∂Y = AY is called a solution of ∂Y = AY in K ′. An (n × n) invertible matrix Φ ∈ GLn(K ′) with

Φ′ = AΦ is called a fundamental solution matrix of Y ′ = AY in K ′.



Remark. We will see later that the set SolK := {Y ∈ Kn, ∂Y = AY } is a vector space of dimension

≤ n over the field of constants C of K. In general, dimC(SolK) < n. However, there always exists a

differential field extension K ⊂ K ′ such that over K ′ the solution space has dimension n. Such extensions

are known, if they are minimal, as Picard-Vessiot extensions [vdPS].

Example. (I13) Let K be one of the fields C{{x}} = Quot(C{x}) or C((x)) = Quot(C[[x]]) equipped

with the derivation ∂ : K → K defined by ∂x = 1 and set δ = x∂ : K → K, δx = x. If A ∈ Mn(K), we

obtain the maps

∂ −A : Kn → Kn,

Y 7→ Y ′ −AY ,

and

δ −A : Kn → Kn,

Y 7→ xY ′ −AY .

For example, consider the system Y ′ = AY with A =

(
0 1
−2
x

x+2
x

)
. We have Y ′ = AY if and only

if y′1 = y2 and y′2 = − 2
xy1 + (x+2)

x y2. This gives, setting y = y1 and y′ = y2 [exercise: check the

formulas] the scalar equation y′′ = − 2
xy + (x+2)

x y′, say xy′′ − (x+ 2)y′ + 2y = 0. Then y1(x) = ex and

y2(x) = 1 + x+ 1
2x

2 are C-linearly independent solutions of this equation. Therefore(
ex

ex

)
and (

1 + x+ 1
2x

2

1 + x

)
are linearly independent solutions of Y ′ = AY and hence Φ =

(
ex 1 + x+ 1

2x
2

ex 1 + x

)
is a fundamental

solution matrix of the system Y ′ = AY .

The singularities of the system ∂Y = AY are the poles of the entries ofA. Similarly as for scalar equations,

a singularity of a system is called apparent if there exists a fundamental solution matrix Ỹ (x) of ∂Y = AY

with holomorphic entries.

Remark. Note that if we replace Y by PY in the system, where P ∈ GLn(K) is an invertible matrix, we

obtain a new system

∂Y = (P−1AP − P−1∂P )Y =: BY ,

with B = P−1AP − P−1∂P . Two systems ∂Y = AY and ∂Y = BY are called gauge equivalent (over

K) if there exists P ∈ GLn(K) so that B = P−1AP − P−1∂P . If P ∈ GLn(K ′) for some differential

field extension K ′ of K then ∂Y = AY and ∂Y = BY are called gauge equivalent over K ′.

Expressed in terms of maps we get from (P−1 ◦ ∂ ◦P )(Y ) = P−1(∂(PY )) = P−1(∂P )Y +P−1P∂Y =

P−1(∂P )Y + ∂Y = (P−1∂P + ∂)Y that

∂ −B = P−1 ◦ (∂ −A) ◦ P = P−1 ◦ ∂ ◦ P − P−1 ◦A ◦ P

= P−1∂P + ∂ − P−1AP

= ∂ − (P−1AP − P−1∂P )

= P−1AP − P−1∂P .



Lemma (Jósef Maria Hoëné-Wroński, 1776-1853) Let be given n holomorphic functions y1, ..., yn

defined in a neighborhood of 0 ∈ C. They are C-linearly dependent if and only if the Wronskian

matrix

W (y1, ..., yn) =


y1 · · · yn
y′1 · · · y′n
. .
. .

y
(n−1)
1 · · · y

(n−1)
n


formed by the row vector (y1, ..., yn) and its first n− 1 derivatives has zero determinant.

Remarks. (a) This can be done as an exercise, using induction on n, see below. See also [Honda, Lemma,

p. 172, resp. Kol1] for a characteristic p version: If the determinant of Wronskian vanishes, then y1, ..., yn
are linearly dependent over K(xp). See also appendix B in [diVi2].

(b) The case n = 2 is particularly instructive. Let y = y(x) and z = z(x) be two holomorphic functions,

not identically 0, and assume that their Wronskian determinant is 0,

det

(
y z
y′ z′

)
= yz′ − y′z = 0.

This is equivalent to
y

y′
=

z

z′
and thus to log(y)′ = log(z)′. We get equivalently log y = log z+ c for some

constant c ∈ C, hence y = ec · z as claimed.

Proof. We prove the non-trivial implication. It is a bit tricky. So let W (y1, ..., yn) have zero determinant.

If n = 1, we get y1 = 0. We now assume n ≥ 2, and wlog that yn 6= 0. One checks by computation that

det(W (y1, ..., yn)) = ynn · det(W (y1/yn, ..., yn−1/yn, 1)),

and

det(W (y1/yn, ..., yn−1/yn, 1)) = (−1)n · det(W ((y1/yn)′, ..., (yn−1/yn)′)).

Applying the lemma in the case n− 1 we get constants c1, ..., cn−1 ∈ C such that

c1 · (y1/yn)′ + · · ·+ cn−1 · (yn−1/yn)′ = 0.

It follows that

c1 · y1/yn + · · ·+ cn−1 · yn−1/yn = c,

for some c ∈ C. This shows that y1, ..., yn are C-linearly dependent. 	

Corollary. An n-th order linear differential equation Ly = 0 with holomorphic coefficients has at

most n C-linearly independent local holomorphic solutions.

Proof. Assume we had n + 1 solutions y1, ..., yn+1. The columns of W (y1, ..., yn+1) are given by

(yi, y
′
i, ..., y

(n−1)
i , y

(n)
i )T . The entries of each of these vectors are C{x}-linearly dependent since they

satisfy the linear relation given by Ly = 0. It follows that the determinant of W (y1, ..., yn+1) is zero. By

Wronski’s lemma we conclude that y1, ..., yn+1 are C-linearly dependent. 	

Lemma. Consider two n-th order linear differential equations Ly = 0 and My = 0. Assume given

holomorphic functions y1, ..., yn at 0 which form a basis of solutions for both L and M . Then there

exists a meromorphic function h at 0 such that M = h · L.

Proof. It is sufficient to prove the assertion for formal power series operators. The convergent case goes

along the same lines. Let C((x)) denote the quotient field of C[[x]], i.e., the field of formal Laurent series.



Define a map α : C((x))[∂] → C((x))n, sending a differential operator N to the vector (Ny1, ..., Nyn)

given by evaluation. By definition, L and M belong to the kernel of α. But C((x))[∂] is a polynomial

ring over a field and hence a principal ideal domain. Hence Ker(α) is generated by one operator N , and

L and M are C((x))[∂]-multiples of it. But y1, ..., yn are then also C-linearly independent solutions of N ,

therefore N has order at least n. As L and M are multiples of it (as elements of the ring C((x))[∂]), N

must have order n. This implies that L = f ·N , M = g ·N for suitable f, g ∈ C((x)). Setting h = f/g

we get M = g · L as required. 	


